Rapid Telomere Movement in Meiotic Prophase Is Promoted By NDJ1, MPS3, and CSM4 and Is Modulated by Recombination

نویسندگان

  • Michael N. Conrad
  • Chih-Ying Lee
  • Gene Chao
  • M. Shinohara
  • H. Kosaka
  • A. Shinohara
  • J.-A. Conchello
  • Michael E. Dresser
چکیده

Haploidization of the genome in meiosis requires that chromosomes be sorted exclusively into pairs stabilized by synaptonemal complexes (SCs) and crossovers. This sorting and pairing is accompanied by active chromosome positioning in meiotic prophase in which telomeres cluster near the spindle pole to form the bouquet before dispersing around the nuclear envelope. We now describe telomere-led rapid prophase movements (RPMs) that frequently exceed 1 microm/s and persist throughout meiotic prophase. Bouquet formation and RPMs depend on NDJ1, MPS3, and a new member of this pathway, CSM4, which encodes a meiosis-specific nuclear envelope protein required specifically for telomere mobility. RPMs initiate independently of recombination but differ quantitatively in mutants that fail to complete recombination, suggesting that RPMs respond to recombination status. Together with recombination defects described for ndj1, our observations suggest that RPMs and SCs balance the disruption and stabilization of recombinational interactions, respectively, to regulate crossing over.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Csm4-Dependent Telomere Movement on Nuclear Envelope Promotes Meiotic Recombination

During meiotic prophase, chromosomes display rapid movement, and their telomeres attach to the nuclear envelope and cluster to form a "chromosomal bouquet." Little is known about the roles of the chromosome movement and telomere clustering in this phase. In budding yeast, telomere clustering is promoted by a meiosis-specific, telomere-binding protein, Ndj1. Here, we show that a meiosis-specific...

متن کامل

Csm4, in Collaboration with Ndj1, Mediates Telomere-Led Chromosome Dynamics and Recombination during Yeast Meiosis

Chromosome movements are a general feature of mid-prophase of meiosis. In budding yeast, meiotic chromosomes exhibit dynamic movements, led by nuclear envelope (NE)-associated telomeres, throughout the zygotene and pachytene stages. Zygotene motion underlies the global tendency for colocalization of NE-associated chromosome ends in a "bouquet." In this study, we identify Csm4 as a new molecular...

متن کامل

Chromosome Mechanics and Meiotic Engine Maintenance

The behavior of chromosomes during meiosis has been likened to a middle school dance, where partners find one another, form couples that move about and trade information, and then separate to opposite sides of the dance hall. With chromosomes, as with the dancers, forming exclusive couples often is difficult—individuals can be attracted to more than one partner or find themselves trapped behind...

متن کامل

Meiotic Chromosome Pairing Is Promoted by Telomere-Led Chromosome Movements Independent of Bouquet Formation

Chromosome pairing in meiotic prophase is a prerequisite for the high fidelity of chromosome segregation that haploidizes the genome prior to gamete formation. In the budding yeast Saccharomyces cerevisiae, as in most multicellular eukaryotes, homologous pairing at the cytological level reflects the contemporaneous search for homology at the molecular level, where DNA double-strand broken ends ...

متن کامل

Ndj1, a telomere-associated protein, regulates centrosome separation in budding yeast meiosis

Yeast centrosomes (called spindle pole bodies [SPBs]) remain cohesive for hours during meiotic G2 when recombination takes place. In contrast, SPBs separate within minutes after duplication in vegetative cells. We report here that Ndj1, a previously known meiosis-specific telomere-associated protein, is required for protecting SPB cohesion. Ndj1 localizes to the SPB but dissociates from it ∼16 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 133  شماره 

صفحات  -

تاریخ انتشار 2008